
Constructing an Informative Prior
Distribution of Noises in Seasonal

Adjustment

Linyi Guo

Thesis submitted to the University of Ottawa in partial fulfillment of
the requirements for the Master of Science degree in Statistics

Department of Mathematics and Statistics
Faculty of Science

University of Ottawa

c©Linyi Guo, Ottawa, Canada, 2020.



Abstract

Time series data is very common in our daily life. Since they are related to time,
most of them show a periodicity. The existence of this periodic influence leads
to our research problem, seasonal adjustment. Seasonal adjustment is generally
applied around us, especially in areas of economy and finance. Over the last few
decades, scholars around the world made a lot of contributions in this area, and
one of the latest methods is X-13ARIMA-SEATS, which is built on ARIMA models
and linear filters. On the other hand, state space modelling (abbreviated to SSM)
is also a popular method to solve this problem and researchers including J. Durbin,
S.J. Koopman and and A. Harvery have contributed a lot of work to it. Unlike
linear filters and ARIMA models, the study on SSM starts relatively late, thus it
has not been studied and developed widely for the seasonal adjustment problem.
And SSMs have a lot advantages over those ARIMA-based and filter-based methods
such as flexibility, the understandable structure and the potential to do partial
pooling, but in practice, its default decomposition result behaves bad in some cases,
such as excessively spiky trend series; on the contrary, X-13ARIMA-SEATS could
output good decomposition result for us to analyze, but it can’t be tweaked or
combined as easily as generative models and behaves like a black-box. In this paper,
we shall use Bayesian inference to combine both methods’ characteristics together.
Simultaneously, to show the advantage of using SSMs concretely, we shall give a
simple application in partial pooling and talk about how to apply the Bayesian
analysis to partial pooling.
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Chapter 1

Introduction

Seasonal adjustment is widely applied around us. In the areas of economics and
the signal processing of engineering, people need to deal with various time series
data almost everyday. The essential of both is to study how to decompose an
existing time series and make an accurate prediction. Generally, one time series
data in economics could be divided into different components, such as the trend, the
seasonal and the irregular series. These components in signal processing are also
called signals. Due to the influence of seasonal movements and some other calendar
effects like the Christmas, the Easter and the Chinese New Year, the raw data is
usually hard to utilize for analysis directly. Therefore, removing those undesired
signals is important for our analysis. Meanwhile, to obtain a good forecasting,
ensuring an accurate decomposition of the data is also necessary.

To illustrate the significance of the decomposition, let’s look at a simple example.
Suppose Figure 1.1 is our observation:

Figure 1.1: Observed Data Distribution

It seems that there is barely no pattern behind it, and one reasonable prediction
we could make is that it would increase later. But actually the raw data is from the
function:

y = sin2x+ 5cos
x

2
, (1.1)

which means if we could find the expression of these two parts, then our prediction
would be prefect! Therefore, if we could find the accurate expression of our compo-
nents, it would not only help us with analysis but also for the future prediction. But
in the real life, a true time series dataset is always more complicated. The general

1



CHAPTER 1. INTRODUCTION 2

idea is to write a decomposition of the observed time series {yt} in terms of some
easily-interpretable latent variables and some residual noise. For practical purposes
we often try to use linear models of the form

yt =
∑
k

xkt + εt,

where xkt are the easily-interpreted latent variables (such as a periodic function
corresponding to seasonal effects, an overall trend, the indicator function for special
holidays, and so on) and εt is some small residual randomness. The most common
simple decomposition has two explanatory series, corresponding to an overall trend
and to seasonal effects.

For example, AirPassengers dataset is the monthly totals of international airline
passengers from 1949 to 1960. With the X-11 method or other methods (see Chapter
2), the original dataset could be decomposed into two components with an residual
easily, see Figure 1.2. The purpose of this paper is to explore how to use state space
models and the Kalman filter, which we shall introduce later, to generate results
similar to those from X-11.

Figure 1.2: AirPassengers dataset and its decomposition

With the appearance and development of ARIMA processes, statistical agencies
around the world came up with various ad-hoc fixes for different real census-type
data. The history of the seasonal adjustment problem could be traced back to 1960s,
at which time the X-11 program was first proposed by U.S. Bureau of the Census,
see [Shiskin et al., 1967]. In 1980, Statistics Canada came up with a new program
X-11-ARIMA ([Dagum, 1980]), where people could utilize ARIMA models to extend
one time series to overcome the inaccuracy of the beginning and ending from X-11
method. Then U.S. Census Bureau developed an improved version X-12-ARIMA
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([Findley et al., 1998]) based on X-11-ARIMA. Just two years before that, the
Bank of Spain came up with another ARIMA-model-based method called TRAMO-
SEATS 1 (see [Gomez and Maravall, 1996]), which is used widely in European official
statistics agencies at that time. This program is developed from a series of papers by
Victor Gómez and Agustin Maravall (see [Gómez and Maravall, 2001] and [Caporello
and Maravall, 2004]). In 2007, U.S. Census Bureau brought up X-13ARIMA-SEATS
(see [Monsell, 2007]), which basically combined all the previous work together and
is the up-to-date method used in official statistics agencies around the world.

Generally speaking, because of the existence of outliers, calendar effects and
other factors, the first step in seasonal adjustment is to preprocess our raw data.
In both widely used methods TRAMO-SEATS and X-13ARIMA-SEATS, this step
is achieved by two ARIMA-model-based methods separately, TRAMO and Re-
gARIMA. The second step after preprocessing is usually to decompose the processed
dataset. For TRAMO-SEATS, this step is handled by SEATS. For X-13ARIMA-
SEATS, you can either choose X-11 or SEATS. The difference is that X-11 is a non-
parametric universal method which use linear filters (moving averages) and SEATS
is an ARIMA-model-based parametric method. These methods could give us good
results in most instances, but still have a few shortcomings (see Section 3.4). The
theories behind these methods could be referred to Chapter 2 and the references we
mentioned in the last paragraph.

On the other hand, compared with ARIMA models, the state space model (some-
times also known as the hidden Markov model, abbreviated to SSM or HMM) is also
an efficient modelling method to various problems including seasonal adjustment and
was first proposed in [Kalman, 1960]. To fit the state space model, R.E. Kalman
came up with the well-known algorithm, the Kalman filter, which is applied well
in linear systems and used widely in control theory, signal processing, Guidance,
navigation and control and so on. Methods such as the extended Kalman filter
(see [Jazwinski, 2007]) and the particle filter (see [Robert and Casella, 2013a]) are
developed to solve nonlinear system problems, but they are all applied to the state
space model. We shall give a brief introduction of the SSM and the Kalman filter
in Chapter 3.

State space models have many advantages over the previous models used in
seasonal adjustment. For example, every ARIMA model could be transformed into
a state space model but not vice versa, which means we could model more general
system with SSMs. And another obvious advantage of SSMs is its interpretable
structure. For instance, we could treat the observation {yt} as a combination of
the irregular, trend and seasonal components {It}, {Tt} and {St}, and build two
processes for the trend and seasonality according to our understanding:

yt = Tt + St + It,

Tt+1 = Tt + ηt,

St+1 = −
s−1∑
j=1

St+1−j + ωt,

where t = 1, . . . , n, s is the length of each seasonal cycle. By convention, ηt, ωt are
independent and identically distributed Gaussian noises with mean 0 and variances

1“TRAMO” stands for “Time series Regression with ARIMA noise, Missing values and Outliers”
and “SEATS” stands for “Signal Extraction in ARIMA Time Series”.
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σ2
I , σ

2
T , σ2

S. In this model we could tell exactly that:

• the observation yt has three different parts;

• the trend component is a random walk in fact;

• the summation of seasonal components over one period s follows a normal
distribution with mean 0 and variance σ2

S;

• the irregular component is a gaussian noise with mean 0 and variance σ2
I .

Therefore, before we write down the state space model for one system, we basically
have an intuitive understanding of what our problem and components are. More
advantages of SSMs are given in Section 3.4 and [Durbin and Koopman, 2012].

The main purpose and the important achievement of this paper is to apply
Bayesian analysis to SSMs to generate the similar decomposition result in terms
of those from X-11. Over the last few decades, methods such as X-11 and SEATS
have been used widely in government departments and statistics agencies to deal
with the decomposition problem and their results have been proved to be useful
and convincing by experts. Based on this fact, the main purpose of this paper is
to explore how to use SSMs to generate the similar decomposition result compared
with X-11’s. Specifically, we will first show the deficiency of the maximum likelihood
estimate, and then introduce a loss-based method to force our SSMs to generate the
satisfying decomposition result. Nevertheless, since our goal is to only apply state
space models without using X-11 or other ARIMA-model-based methods, we come
up with an empirical-Bayesian-based method to get rid of the dependence on X-
11 and compare its results with those from other estimators. All these details are
given in Chapter 4. We shall also use a real dataset unemployment to verify that
the empirical prior distribution does help us to optimize the default decomposition
result from SSMs and to make a compromise between X-11 and the standard SSM.
In addition, we shall use two real sales datasets to show an important superiority of
SSMs, namely partial pooling, which cannot be realized by ARIMA.



Chapter 2

ARIMA models and X-11

In this chapter, we shall talk about the autoregressive integrated moving-average
(abbreviated to ARIMA) models and the methodologies used in statistical agencies
throughout the world. As mentioned in Chapter 1, the first method proposed to
solve the seasonal adjustment problem is X-11, which is a combination of linear
filters. But after that, almost every new method benefits from ARIMA models, such
as X-11-ARIMA, X-12-ARIMA and TRAMO-SEATS. From this point, we could
realize the importance of ARIMA models in these conventional seasonal adjustment
methods. In Section 2.1, we will give a brief introduction of ARIMA and other
related models. More details could be found in [Brockwell and Davis, 2016]. Section
2.2 gives a general introduction of techniques used for decomposing a time series
dataset. Then we shall explain the theories behind X-11 in Section 2.3. [Harvey
et al., 2018] and [Dagum and Bianconcini, 2016] have given a detailed explanation
of other methods besides X-11.

2.1 ARIMA models

ARIMA, the abbreviation of autoregressive integrated moving average, could be
treated as one of the most important models in time series area. ARMA is another
fundamental model, which first appeared in 1938 (see [Wold, 1938]) and became
popular since 1970 (see [Box and Jenkins, 1970]) and could be viewed as a simplified
version of ARIMA. It is used to analyse the stationary process, but in practice, most
of datasets are not stationary, and ARIMA is designed for these cases. We will talk
about them in Subsections 2.1.1 and 2.1.2 respectively. Examples of the stationary
and nonstationary series are showed in Figure 2.1, which are the irregular component
and the original measurement of the AirPassengers dataset.

2.1.1 ARMA

ARMA models could be treated as the combination of an autoregressive model and
a moving-average model, which are defined as following:

Xt − φ1Xt−1 − · · · − φpXt−p = εt, (2.1)

Xt = εt + θ1εt−1 + · · ·+ θqεt−q, (2.2)

where {Xt} is the observation, εt ∼ N(0, σ2), {φ1, . . . , φp} and {θ1, . . . , θq} are
parameters in AR(p) and MA(q) models. For every t, if {Xt} meets equation 2.1,

5
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Figure 2.1: Examples of the stationary and nonstationary series

then we call it a autoregressive model of order p, denoted as AR(p); if {Xt} meets
equation 2.2, then we call it a moving-average model of order q, denoted as MA(q).

With the same notations, we define {Xt} as an ARMA(p, q) process if {Xt} is
stationary and for every t, {Xt} satisfies

Xt −
p∑
i=1

φiXt−i = εt +

q∑
i=1

θiεt−i, (2.3)

where polynomials 1 − φ1x − φ2x
2 − · · · − φpxp and 1 + θ1x + · · · + θqx

q have no
common factors. To simplify the formula, we re-write equation 2.3 with a backward
operator B:

φ(B)Xt = θ(B)εt, (2.4)

where BjXt = Xt−j, {εt} ∼ N(0, σ2), φ(B) = 1 − φ1B − φ2B
2 − · · · − φpBp and

θ(B) = 1 + θ1B+ θ2B
2 + · · ·+ θpB

q. Note: the basic definitions such as stationarity
can be found in Chapters 2 and 3 of [Brockwell and Davis, 2016]. The ARMA model
requires the observation is stationary. If not, then we need to use ARIMA models,
see Subsection 2.1.2.

In practice, p and q are not very large and we could often determine these
coefficients by hand even without a computer. Thus it is easier to fit a stationary
process with an ARMA model instead of a general SSM.

2.1.2 ARIMA and SARIMA

ARIMA is meant to solve the obvious problem with ARMA: most series are obviously
not stationary. The idea behind ARIMA is that a differenced series {(1 − B)dXt}
would be approximately stationary, even if the original series {Xt} isn’t. For exam-
ple, if the series {Xt} is nonstationary, by differencing it for one time (i.e. d = 1),
the new differenced series {Xt+1 − Xt} could be stationary. ARIMA is the sim-
plest model one can build on top of ARMA based on this observation. Thus in
the ARIMA framework, we shall increase the difference times successively until the
result seems to be stationary. We then model the differenced series with an ARMA
model. Figure 2.2 shows two different types of nonstationary series, which is drawn
from the seasonally adjusted series and the original measurement of the AirPassen-
gers dataset.
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Figure 2.2: Examples of nonstationary series

Suppose {Xt} is the observation, and we define Yt = (1 − B)dXt, where d is
a nonnegative integer. If {Yt} is a causal ARMA(p, q) process, then {Xt} is an
ARIMA(p, d, q) process (See Chapter 3 in [Brockwell and Davis, 2016] for the defi-
nition of causality). Mathematically, an ARIMA(p,d,q) process {Xt} satisfies

φ(B)(1−B)dXt = θ(B)εt, (2.5)

where φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp, θ(B) = 1 + θ1B + θ2B

2 + · · · + θpB
q,

p and q are nonnegative integers.
Sometimes, the fluctuation of datasets may present a seasonal pattern. For

example, the monthly data may have peaks or troughs at the same month of each
year, like the second graph in Figure 2.2. In these cases, we could use seasonal
ARIMA (SARIMA) models , which could be viewed as an extension of ARIMA.

Suppose {Xt} is the observation and Yt = (1−B)d(1−Bs)DXt, where d, D and
s are nonnegative integers, and we define

φ(x) = 1− φ1x− φ2x
2 − · · · − φpxp,

Φ(x) = 1− Φ1x− Φ2x
2 − · · · − ΦPx

P ,

θ(x) = 1− θ1x− θ2x2 − · · · − θqxq,
Θ(x) = 1−Θ1x−Θ2x

2 − · · · −ΘQx
Q,

where p, q, P and Q are nonnegative integers, then if {Yt} is a causal ARMA process
satisfying

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)εt, (2.6)

where {εt} ∼ N(0, σ2), then we say {Xt} is a SARIMA(p, d, q)× (P,D,Q)s process
with period s. In this paper, we choose s = 12 as the seasonal frequency when
simulating datasets. We may note that s itself is determined by data not us in
practice, and fixing s at 12 could be a bad choice for some cases, like the monthly
data.

2.2 Techniques used for decomposition

In this section, we shall mainly talk about the techniques proposed to decompose a
time series dataset. Typically, a time series {yt} is composed by

yt = Tt + St + It, or yt = Tt · St · It, (2.7)
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where t = 1, . . . , n, and Tt, St, It are trend, seasonal and irregular components
separately. If the model is multiplicative like some stock models, then we usually
need to take a logarithm transformation if necessary.

To make full use of the properties of the stationary process, we need to eliminate
the trend and seasonality. Generally speaking, there are two ways: (1) estimate the
trend and seasonality and then extract them out to obtain the stationary process;
(2) eliminate them by differencing the original series directly, which is exactly what
we introduced in Subsection 2.1.2.

For classical decomposition methods X-11 and SEATS, they both take the first
choice. The difference is that X-11 use different linear filters to extract the trend and
seasonal series (see Section 2.3) whereas SEATS assumes every component could be
modelled by an ARIMA model. In another word, if we use SEATS to decompose a
time series, we will build m ARIMA models for m latent variables and build another
one for our observations, see equation 2.8. For the classical decomposition defined
by equation 2.7, m = 3. More details of SEATS could be found in [Dagum and
Bianconcini, 2016].

ϕ(B)yt = ϑ(B)at,

ϕT (B)Tt = ϑT (B)bt,

ϕS(B)St = ϑS(B)ct,

ϕI(B)It = ϑI(B)dt,

(2.8)

where all ϕ and ϑ are polynomials of B and at, bt, ct and dt are identically and
independently distributed Gaussian noises with variances σ2

a, σ
2
b , σ

2
c and σ2

d. See
[Hillmer and Tiao, 1982] for derivation and analysis with regard to equation 2.8.

Except for X-11 and SEATS, there is also another decomposition method known
as STL (Seasonal and Trend decomposition using Loess) developed by Cleveland,
Cleveland, McRae and Terpenning. If readers are interested, please refer to
[Cleveland et al., 1990].

On the other hand, the preprocessing methods TRAMO and regARIMA are
both built on ARIMA models. Hence we can tell that the ARIMA model plays
a very crucial role in classical methodologies for seasonal adjustment. However,
since this paper didn’t apply any ARIMA-related methods, we won’t explain more
here. [Brockwell and Davis, 2016] has given a detailed introduction to ARIMA and
relevant techniques.

2.3 X-11 method

As the earliest method developed to solve seasonal adjustment problem, X-11 is still
used as one of the most popular methods nowadays because of its good applicability
and simplicity. In this section, we shall see the decomposition steps in X-11. [Ladiray
and Quenneville, 2012] is a professional book to explain all procedures in X-11 and
other relevant theories.

As what we mentioned in Chapter 1, the centre of X-11 is the moving average.
The general formula of the moving average is

X̂t =

q∑
i=−p

θiXt+i, (2.9)
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where X̂t is the smoothed value at time t. If p = q, we call this filter is centred. And
if θ−k = θk in a centred moving average, it is symmetric. For the simplest symmetric
moving average with order P = 2p+ 1, its weight at each point is 1

P
.

In X-11, we mainly use two moving averages: one is the composite moving
average, which is a composite of the simplest moving averages, and another one is
the Henderson moving average, which is derived by Robert Henderson for actuarial
problems in 1916. For example, a 2× 4 composite moving average at time t is

X̂t =
1

8
Xt−2 +

2

8
Xt−1 +

2

8
Xt +

2

8
Xt+1 +

1

8
Xt+2.

For a Henderson moving average of order 2p+ 1, its weight is computed by

θi =
315[(n− 1)2 − i2][n2 − i2][(n+ 1)2 − i2][3n2 − 16− 11i2]

8n(n2 − 1)(4n2 − 1)(4n2 − 9)(4n2 − 25)
, (2.10)

where i = −p, . . . , 0, . . . , p and n = p+ 2.
Now, suppose our data is additively composed by the trend, seasonal and irreg-

ular series, that is
Xt = Tt + St + It, (2.11)

where t = 1, . . . , T . We further assume our observation {Xt} has been preprocessed
and is monthly data. Then there are 10 main steps in the decomposition procedure:

(i) Estimation of the initial trend by 2× 12 MA:

T
(1)
t =

1

24
Xt−6 +

1

12
Xt−5 + · · ·+ 1

12
Xt+5 +

1

24
Xt+6; (2.12)

(ii) Estimation of the initial seasonal-irregular component:

SI
(1)
t = Xt − T (1)

t ; (2.13)

(iii) Estimation of the initial seasonal component by 3 × 3 seasonal moving av-
erage:

Ŝ
(1)
t =

1

9
SI

(1)
t−24 +

2

9
SI

(1)
t−12 +

3

9
SI

(1)
t +

2

9
SI

(1)
t+12 +

1

9
SI

(1)
t+24, (2.14)

then using a 2× 12 moving average to center it:

S
(1)
t = Ŝ

(1)
t − (

1

24
Ŝ
(1)
t−6 +

1

12
Ŝ
(1)
t−5 + · · ·+ 1

12
Ŝ
(1)
t+5 +

1

24
Ŝt+6)

(1); (2.15)

(iv) Estimation of the initial seasonally adjusted series:

SA
(1)
t = Xt − S(1)

t ; (2.16)

(v) Estimation of the intermediate trend by (2H + 1)-term Henderson moving
average:

T
(2)
t =

H∑
j=−H

h
(2H+1)
j SA

(1)
t , (2.17)

where hj are weights of 2H + 1 Henderson MA, and H is determined by users and
data;
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(vi) Estimation of the intermediate seasonal-irregular component:

SA
(2)
t = Xt − T (2)

t ; (2.18)

(vii) Estimation of the seasonal component by 3 × 5 seasonal moving average
and centred by 2× 12 moving average again:

Ŝ
(2)
t =

1

15
SI

(2)
t−36 +

2

15
SI

(2)
t−24 +

3

15
SI

(2)
t−12

+
3

15
SI

(2)
t +

3

15
SI

(2)
t+12 +

2

15
SI

(2)
t+24 +

1

15
SI

(2)
t+36, (2.19)

S
(2)
t = Ŝ

(2)
t − (

1

24
Ŝ
(2)
t−6 +

1

12
Ŝ
(2)
t−5 + · · ·+ 1

12
Ŝ
(2)
t+5 +

1

24
Ŝ
(2)
t+6), (2.20)

where S
(2)
t is the seasonal series we obtained from X-11;

(viii) Estimation of the seasonally adjusted series again:

SA
(2)
t = Xt − S(2)

t , (2.21)

which is the seasonally adjusted series from X-11;
(ix) Estimation of the trend series by a (2H ′+1)-term Henderson moving average,

where H ′ is still not fixed, and this output is the final trend series:

T
(2)
t =

H′∑
j=−H′

h
(2H′+1)
j SA

(2)
t ; (2.22)

(x) Estimation of the irregular series:

It = SA
(2)
t − T

(2)
t . (2.23)

Steps (i)-(x) above are the main procedure used for decomposition in X-11.
Although X-11 is the first method brought up to do seasonal adjustment, given
its simplicity and good applicability, people still use it in many statistic agencies.
Nonetheless, we should be aware of that X-11 works bad when there are prominent
outliers in the data. And this is the reason why we assume the dataset has been
preprocessed at the beginning. Also, the missing values would cause some similar
problems, and we assume they have been disposed as well. Meanwhile, because of
the characteristic of symmetric moving averages and the fact that we don’t know
the data before the first one and after the last one, X-11 may not have good results
around the beginning and the end. The common treatment was to let the observation
with negative indices to be 0 in old versions. But this drawback has been fixed after
combining it with ARIMA models, because we can fit data with an ARIMA model
beforehand and then use this ARIMA model to backcast and forecast the series.



Chapter 3

State space modelling and the
Kalman filter

In Chapter 1, we have said R.E. Kalman brought up this statement and the fa-
mous algorithm, the Kalman filter in [Kalman, 1960]. The state space model, also
known as the hidden Markov model sometimes (see [Rabiner, 1989]), is a powerful
modelling method and applied widely in engineering, statistics, economics, etc. We
shall introduce this model and explain it with some examples in Section 3.1. And
in Section 3.2, we will show its generality by giving three common models that have
their state space forms. Although there are many methods to extract hidden states
from our observations, the Kalman filter is the most widely used one. Section 3.3
shows the theory of how the Kalman filter works given the structural state space
model, which is also what we used in our research. Developed from the Kalman
filter, the extended Kalman filter (EKF) and the unscented Kalman filter (UKF)
work on nonlinear systems. Meanwhile, the particle filter is a popular Monte Carlo
method for SSMs (See Chapter 14 in [Robert and Casella, 2013b]). Section 3.4 will
give a detailed comparison of SSMs and ARIMA models to explain why we would
like to study SSMs.

3.1 Introduction to state space modelling

State space modelling was first proposed to solve the problems in the area of control
theory in 1960s. Then in 1980s and 1990s, with the gradual development of related
theories, this model became more and more popular.

For a state space model, the observation is usually composed by one or more
components, which is called the state in SSMs. For each state space model, both of
the observation and the state could be multivariate or univariate. But in practice,
at least in seasonal adjustment, we usually deal with cases in which the observation
is univariate and the state space is multivariate. If states in a SSM are unobserved
and each state is a Markov process, then we call this SSM a hidden Markov model,
although some people seem to use SSM and HMM as synonyms. In general cases,
what we know about the whole system includes the observations, the relation be-
tween observation and states, and the pattern how each state updates.

Figure 3.1 illustrates the HMM vividly (see lecture 19, [Protopapas, 2014]). In
this figure, y0:T is the observation and x0:T is our hidden state, which behaves as a
Markov chain, that is, the current state only depends on the last state. Suppose Tt

11
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Figure 3.1: State space models

is the transition matrix of the Markov process from time t to t + 1, then a general
discrete hidden Markov model is

yt = f(Xt, εt),

Xt+1 = g(Xt, ηt),
(3.1)

where f and g are two generic functions, and εt and ηt are noises.
By specializing the generic function f and the general noises εt and ηt to a matrix

Zt and additive Gaussian noises separately, we can obtain the linear gaussian state
space model:

yt = ZtXt + εt, εt ∼ N(0, Ht), (3.2)

Xt+1 = CtXt +Rtηt, ηt ∼ N(0, Qt), (3.3)

where t = 1, ..., n, and X1 ∼ N(a1, P1). Equation 3.2 is called the measurement
equation and equation 3.3 is called the transition equation. Suppose the dimension
of our observation is p×1 and the state is m×1, then dimensions of above matrices
are given in the table 3.1.

Vector Dimension Matrix Dimension
yt p× 1 Zt p×m
Xt m× 1 Tt m×m
εt p× 1 Rt m× r
ηt r × 1 Ht p× p

Qt r × r

Table 3.1: Dimensions of notations

Example 3.1.1. In Section 2.1, we have talked about ARIMA models. Here we
will show how to transform a AR(2) model to a state space form at first and then
introduce the general state space forms for AR(p) models.

Suppose our AR(2) model is

yt = φ1yt−1 + φ2yt−2 + εt, (3.4)

where εt ∼ N(0, σ2), then we can find a new observation is related to the previous
two values, therefore when defining this state space model, the transition equation
3.3 should have at least two states to achieve iterations.
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Based on this, we will get the following result

yt =
[
1 0

]
xt, (3.5)

xt =

[
φ1 φ2

1 0

]
xt−1 + ωt, (3.6)

where xt =
[
yt yt−1

]T
and ωt =

[
εt 0

]T
.

More generally, suppose our model is AR(p), that is

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt, (3.7)

where εt ∼ N(0, σ2). Then the corresponding state space form is

yt =
[
1 0 . . . 0

]
xt, (3.8)

xt =


φ1 φ2 . . . φp−1 φp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

xt−1 + ωt, (3.9)

where xt =
[
yt yt−1 . . . yt−p+1

]T
1×p and ωt =

[
εt 0 . . . 0

]T
1×p.

3.2 Common state space models

In this section, we shall briefly talk about three common models that can be trans-
formed into state space forms, which are structural time series models, ARIMA
models and regression models respectively. Because of these three models, we can
tell the generality of SSMs. Durbin and Koopman have detailedly showed them in
[Durbin and Koopman, 2012].

3.2.1 Structural time series models

The structural time series model is one of the most frequent types we used in SSM
due to its structural characteristic. For one time series data, if we treat it as a
combination of the trend, seasonal and irregular components, then we call it a
structural time series model, which usually have two modes:

yt = Tt + St + It, (3.10)

yt = Tt · St · It, (3.11)

where Tt, St and It stand for the trend, seasonal and irregular components respec-
tively. The series without seasonal part is called seasonally adjusted series. If the
relation is multiplicative, then we usually take the logarithm transformation to put
it into a linear SSM. Mathematically, we shall use log(yt) = T ∗t + S∗t + I∗t instead
of equation 3.11. Generally speaking, if the fluctuation within each year become
greater as time goes on, then this model is multiplicative, like the data we showed
in Figure 2.2.



CHAPTER 3. STATE SPACE MODELLING AND THE KALMAN FILTER 14

The simplest structural time series model is the local level model, where we do
not have any seasonal or other explanatory variables:

yt = Tt + εt,

Tt+1 = Tt + ηt,
(3.12)

where εt ∼ N(0, σ2
y) and ηt ∼ N(0, σ2

T ). If we add a slope to the trend component,
we will obtain the local linear trend model :

yt = Tt + εt,

Tt+1 = Tt + vt + ηt,

vt+1 = vt + ζt.

(3.13)

As for the seasonal component, we usually suppose the sum of its influence over
one period is around zero, thus one simple way to model it is:

St+1 = −
s−1∑
j=1

St+1−j + ωt, (3.14)

where ωt ∼ N(0, σ2
S) and s is the seasonal frequency of our data, that is, for weekly

and monthly data, s = 7 and 12 separately. But sometimes people prefer to use
the trigonometric form to express seasonal components (see [Young et al., 1991] for
details):

St =

[s/2]∑
j=1

(S̃jtcosλjt+ S̃∗jtsinλjt),

S̃j,t+1 = S̃jt + ω̃jt,

S̃∗j,t+1 = S̃∗jt + ω̃∗jt,

(3.15)

where λj = 2πj
s

, j = 1, . . . , [s/2] and ω̃jt, ω̃
∗
jt ∼ N(0, σ2

ω).
And the irregular component in equation 3.10 is generally treated as a normally

distributed noise directly with mean 0.
Therefore, if we combine the local linear trend model 3.13 with the seasonal

equation 3.14, then we could obtain the following state space form (in Chapter 4,
we shall use a similar but easier model composed by the local level model and the
seasonal equation 3.14, see equation 4.2):

yt = Tt + St + It,

Tt+1 = Tt + vt + ηt,

vt+1 = vt + ζt,

St+1 = −
s−1∑
j=1

St+1−j + ωt.

(3.16)

If we transform it into the general state space form 3.2 and 3.3, then all the
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notations are defined as following:

Xt =
[
Tt vt St St−1 · · · St−s+2

]T
,

Zt =
[
Z[T ] Z[S]

]
,

Ct = diag
[
C[T ] C[S]

]
,

Rt = diag
[
R[T ] R[S]

]
,

Qt = diag
[
Q[T ] Q[S]

]
,

(3.17)

where diag means the diagonal matrix and

Z[T ] = [1 0], Z[S] = [1 0 · · · 0],

C[T ] =

[
1 1
0 1

]
, C[S] =


−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,
R[T ] = I2, R[S] =

[
1 0 · · · 0

]
,

Q[T ] =

[
σ2
η 0

0 σ2
ζ

]
, Q[S] = σ2

ω.

3.2.2 ARIMA models

We have introduced the ARIMA model in Section 2.1 and showed how to switch an
AR(2) model into the state space form in Section 3.1. In this subsection, we will
show how to transform an arbitrary ARIMA model into a state space form.

Let’s look at how to transform an ARMA model at first. Suppose we now have
an ARMA(p,q) model:

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q

=

p∑
i=1

φiyt−i + εt +

q∑
j=1

θjεt−j

=
r∑
i=1

φiyt−i + εt +
r−1∑
j=1

θjεt−j, (3.18)

where r = max(p, q + 1), εt ∼ N(0, σ2
ε) and all the parameters are known. To

transform it into the state space form, we define the measurement equation as

yt =
[
1 0 . . . 0

]
xt,

xt =


yt

φ2yt−1 + · · ·+ φryt−r+1 + θ1εt + · · ·+ θr−1εt−r+2

φ3yt−1 + · · ·+ φryt−r+2 + θ2εt + · · ·+ θr−1εt−r+3
...

φryt−1 + θr−1εt

 .
(3.19)
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And the notations in the transition equation are:

Ct = C =


φ1 1 · · · 0
...

...
. . . 0

φr−1 0 · · · 1
φr 0 · · · 0

 , Rt = R =


1
θ1
...

θr−1

 , ηt ∼ N(0, σ2
ε). (3.20)

By 3.19 and 3.20, we have the capacity to transform every known ARMA model
to a corresponding state space model. Similarly, we could put any ARIMA model
into a SSM, see Section 3.4 in [Durbin and Koopman, 2012].

Therefore, mathematically we are able to transform every known ARIMA and
ARMA model into a state space form. On the other hand, many but not all state
space models have their corresponding ARIMA models unless we take some trans-
formation, which confirms that state space modelling is a more general method.
One simplest instance is when our model is multiplicative, then people need to take
logarithm before fitting it with an ARIMA model, while in SSM, we don’t need to
do that. Example 3.2.1 shows one simple successful case. More related work could
be referred to [Harvey, 1990].

Example 3.2.1. In the local linear trend model 3.13, if we take two difference of
observations, we shall get

∆2yt = εt − 2εt−1 + εt−2 + ηt−1 − ηt−2 + ζt−2.

It is not hard to notice only the first two autocorrelations are nonzero, so we can
use a MA(2) model to express the right hand side equivalently, that is

∆2yt = δt + θ∗1δt−1 + θ∗2δt−2,

which is the expression of one ARIMA(0,2,2) model.

We have been aware of the relation between ARIMA modelling and state space
modelling. In the example above, although we did transform the local linear trend
model to an ARIMA model, the information with regard to the slope vt and the
level(trend) Tt is lost in this process. And this is one reason why we would like to
apply the structural time series SSM in our research instead of the ARIMA model-
based methods.

3.2.3 Regression models

As one of the most fundamental concept in statistics, regression models have been
studied for a long time. If we could put a regression model into a SSM, then
that means we could use the algorithms like the Kalman filter to solve a regression
problem. Here, we will show how to transform a linear regression to a linear state
space model.

If we consider the measurement equation ignoring the subscript t, it is exactly a
regression model, which means we could perhaps view a linear regression model as
a measurement equation in SSM, and the coefficient β plays the role of the hidden
state. Suppose we have a simple regression model for a univariate variable y:

y = Xβ + ε, where ε ∼ N(0, H), (3.21)
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then according to equations 3.2 and 3.3, we let:

Zt = X, Ct = I, Rt = Qt = 0, (3.22)

where t = 1, 2, . . . , n, n is the number of measurements and I is the identity ma-
trix. That is, the hidden state as well as the coefficient β stays the same for all
observations y.

If the coefficient β is changeable, then we perhaps need to modify Tt and Rt.
For example, if each element in βt follows a random walk, then it is the multivariate
version of the transition equation in 3.12, that is

Ct = Rt = It, Qt = Σt, (3.23)

where Σt is the diagonal variance matrix of coefficients.
As we all know, for regression problems, one important part is to estimate and

analyse the coefficients. And as we have seen above, the coefficient could be treated
as the hidden state as well. And in SSMs, our purpose is to estimate these states.
From this perspective, the techniques used in SSM could also be applied in a regres-
sion problem.

3.3 The Kalman filter

We have talked the state space model and its classifications in Sections 3.1 and 3.2,
but haven’t introduced the algorithms used to solve it so far. In this section, we
shall give one of the commonest algorithms, the Kalman filter, which is designed to
extract the latent states from linear Gaussian SSMs.

Suppose we have a state space model,

yt = Ztαt + εt, εt ∼ (0, Ht),

αt+1 = Ctαt +Rtηt, ηt ∼ (0, Qt).

then as we know our final purpose is to estimate/filter the latent state αt. To
measure the accuracy of the estimate, one common error is the mean squared error
(MSE), which is also what we used in the Kalman filter. In another word, the filtered
result from the Kalman filter is the MMSE estimate. Meanwhile, the MSE plays a
crucial role in the log-likelihood function. If yt is Gaussian, then the MLE is also
the MMSE estimator. See [Thacker and Lacey, 1998].

The Kalman filter itself is a recursive algorithm mainly composed by prediction
and update two steps. In the prediction step, people predict the state of time
t + 1 only under the state estimate at time t and observed information at time
t. When a new observation at time t + 1 is available, we update the previous
prediction based on it. On the other hand, when talking about the Kalman filter,
we usually append a smoother after it. As we just pointed out, the Kalman filter
only considers the observation y1:t when estimating the state αt, whereas we know
the other observation could also help us adjust our estimate, and with the smoothers
that we shall talk about in Subsection 3.3.2, we could adjust our filtered result and
make them smoother and more convincing. Besides these, the filtering process is
a forward algorithm but the smoothing process is a backward algorithm. We will
expand both algorithms in Subsections 3.3.1 and 3.3.2, more details could be referred
to Appendix A and Chapter 4 of [Durbin and Koopman, 2012].
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3.3.1 Filtering process

Before showing the filtering algorithm, we need to introduce some new notations to
simplify our writing. Given a linear Gaussian state space model,

yt = Ztαt + εt, εt ∼ N(0, Ht),

αt+1 = Ctαt +Rtηt, ηt ∼ N(0, Qt).

We define Yt = y1:t and define:

at|t = E(αt|Yt), at+1 = E(αt+1|Yt),
Pt|t = V ar(αt|Yt), Pt+1 = V ar(αt+1|Yt), (3.24)

vt = yt − Ztat, Ft = V ar(vt|Yt−1).

The filtering process is mainly composed by update and prediction two parts,
which are as following:

Algorithm 1 Filtering process

Require: α1 ∼ N(a1, P1), YT and matrices Z,H, T,R,Q
for t← 1, . . . , n do
vt ← yt − Ztat,
Ft ← ZtPtZ

T
t +Ht,

Kt ← CtPtZ
T
t F
−1
t ,

UPDATE:
at|t ← at + PtZ

T
t F
−1
t vt,

Pt|t ← Pt − PtZT
t F
−1
t ZtPt,

PREDICT:
at+1 ← Ctat +Ktvt,
Pt+1 ← CtPt(Ct −KtZt)

T +RtQtR
T
t .

end for

Usually we do not know the initial distribution N(a1, P1), to solve this problem,
S.J. Koopman and J. Durbin have presented a diffuse method in [Koopman and
Durbin, 2003] and more discussion could be found in Chapter 5 of [Durbin and
Koopman, 2012]. In practice, matrices Zt, Ct, Ht, Rt and Qt are time-invariant
sometimes. For these cases, the following Lemma 3.3.1 could save us considerable
computation time, because it tells us that we don’t need to compute the matrices
Pt, Pt|t, Kt and Ft in a time-invariant SSM once Pt achieves convergence.

Lemma 3.3.1. If one state space model is time-invariant, that is, Zt, Ct, Ht, Rt and
Qt are fixed, then the variance matrix Pt converges to the solution of the equation:

P̄ = T P̄T ′ − T P̄Z ′F̄−1ZP̄T ′ +RQR′, (3.25)

where F̄ = ZP̄Z ′ +H.

Proof. See [Anderson and Moore, 2012].
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3.3.2 Smoothing process

We have introduced the filtering process in Subsection 3.3.1, now let’s look at the
smoothing process. The key point in the state smoothing procedure is to com-
pute α̂t = E(αt|Yn) for t = 1, . . . , n, where Yt = y1:t. There are many different
smoothers including: the fixed-interval smoother E(αt|yt, . . . , ys) on the interval
Yt:s; the fixed-point smoother E(αt|Ys) for s = t + 1, t + 2, . . . ; and the fixed-lag
smoother E(αs−j|Ys) for a fixed positive j and s = j + 1, j + 2, . . . . In this paper,
we shall only use the fixed-interval smoother over the whole observation, which is
also called the Kalman smoother and is the choice recommended by S.J. Koopman
and J. Durbin. The smoothing algorithm is mainly as following:

Algorithm 2 Smoothing process

Require: rn = 0, Nn = 0 and results from the filtering process
for t← n, . . . , 1 do
Lt ← Ct −KtZt,
rt−1 ← Z ′tF

−1
t Vt + L′trt,

Nt−1 ← Z ′tF
−1
t Zt + L′tNtLt,

α̂t ← at + Ptrt−1,
Vt ← Pt − PtNt−1Pt.

end for

Here, we introduced several notations including Lt, rt and Nt in this process and
needed the matrices such as Kt and Ft generated in the filtering process. And differ-
ent from the filtering process, the smoothing process is a backwards algorithm. The
final results α̂t and Vt are the smoothed states and their variances. The smoothing
process is built on the Kalman filter, and optimize one specific state estimate with
the observation after it.

3.4 Advantages of SSMs over ARIMA models

In Chapter 1, we have briefly talked about the advantages of SSMs. In this section,
we shall give a detailed comparison of some characteristics of SSMs and ARIMA
models. In particular, we mainly talk about the advantages of SSMs over ARIMA
models to emphasize the reason why we explore the SSM to solve the seasonal
adjustment problem.

Firstly, the usage of state space models will benefit us to apply the hierarchi-
cal/multilevel model and partial pooling, one of the most useful points accomplished
by hierarchical models. A general interpretation of partial pooling is we shall con-
sider the information from other similar datasets when analyzing the current dataset.
Back to the seasonal adjustment problem, we often meet different datasets from the
same class and these datasets usually share the similar trend and seasonal patterns.
For example, if you look at ice cream sales in a city for several brands over time,
you would expect the time series to be related - all of them might have the same
broad peak in the summer, and they would also likely share more local peaks and
dips caused by hot days or thunderstorms. Fitting these datasets independently
with X-11 won’t help us to catch this dependence. But with hierarchical model, we
can easily achieve it.
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Before giving details of hierarchical SSMs regarding seasonal adjustment, we
introduce one classical application of hierarchical models, the radon level estimation
problem ([Gelman, 2006]). A simple hierarchical model of this problem is

yij ∼ N(αj, σ
2
y),

αj ∼ N(µα, σ
2
α),

(3.26)

where j = 1, . . . , J , i = 1, . . . , nj and yij is the logarithm of radon levels in the
ith house of the jth county. Here, µα and σ2

α are hyperparameters that control the
average radon level of each county, and σ2

y is the common parameter θ in Figure 3.2.
Then we could compute the estimators of αj, σ

2
y, µα and σ2

α by maximizing

p(Y |µα, σ2
y, σ

2
α) = (

J∏
j=1

f(αj|µα, σ2
α))(

nj∏
i=1

f(yij|αj, σ2
y)). (3.27)

Equation 3.27 indicates that when estimating the average radon level αj of the
county j, we also consider the information of other counties, which will help us
deal with the short/inadequate datasets better, because we usually cannot make
convincing inference with a few points. This is called partially pooling. Opposite to
partial pooling, if we let σ2

α = 0, then we call it complete pooling because the average
radon levels for all the counties are the same, which means we put all data together
without distinction. If we let σ2

α = ∞, then we call it no-pooling, because the
average radon levels are uncorrelated to each other, that is to say we build models
for each county separately. Figure 3.2 (from Chapter 8, [Levy, 2012]) illustrates the
hierarchical model vividly with the comparison of the non-hierarchical model.

Figure 3.2: Non-hierarchical and hierarchical models

Back to the hierarchical SSMs for seasonal adjustment, when we have a bunch of
similar and related datasets, we could write down two different hierarchical models
regarding the variance and mean respectively. Generally speaking, for the type of
variances, we usually believe the fluctuation of these datasets and their components
should be related but they could be at different levels; for the type of means, we are
supposing that the components of these datasets are around some identical latent
series but with different fluctuations.

Now for the hierarchical model regarding variances, suppose we use SSMs defined
in equation 4.2, and treat σ = (σI , σT , σS) within each SSM as a sample from another
distribution such as N(µσ,Σσ). Then we could put them together and apply partial
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pooling easily. Mathematically, our hierarchical model in this case is
yjt ∼ N(Tjt + Sjt, σ

2
jI),

Tjt ∼ N(Tj,t−1, σ
2
jT ),

Sjt ∼ N(−
∑s−1

i=1 Sj,t−i, σ
2
jS),


σjI ∼ N(µI , λ

2
I),

σjT ∼ N(µT , λ
2
T ),

σjS ∼ N(µS, λ
2
S),

(3.28)

where t = 1, . . . , nj, j = 1, . . . , J means the jth dataset and for all datasets, the
standard deviations of the same component from those datasets follow the same
distribution. For instance, for a random jth dataset, the standard deviation of the
trend σjT follows N(µT , λ

2
T ). Then we could use samples {y1t}, . . . , {yJt} to estimate

these parameters including µI , µT , µS, λI , etc.
On the other hand, instead of working on the variances, we could build another

hierarchical model regarding the mean, like the example we gave in equation 3.26:
yjt ∼ N(Tjt + Sjt, σ

2
jI),

Tjt ∼ N(T ∗t , σ
2
jT ),

Sjt ∼ N(S∗t , σ
2
jS),

{
T ∗t ∼ N(T ∗t−1, σ

2
T ∗),

S∗t ∼ N(−
∑s−1

i=1 S
∗
t−i, σ

2
S∗),

(3.29)

where we suppose the trend and seasonal components in each dataset are around
another two latent series {T ∗t } and {S∗t } but with their own variances, and these two
latent series obey the formulas we defined for the trend and seasonality. Compared
with the last hierarchical model 3.28, this one requires less computation. We shall
talk more about its application in Chapter 5.

However, due to the difference of structural features, the ARIMA models can’t
do the partial pooling as easily as with the state space model and the Kalman filter.
This is one important reason that motivates us choose the SSM as well as a worthy
underlying improvement orientation.

Secondly, state space models have easily-understandable structure over ARIMA
models. From Subsection 3.2.1, we know a time series data is usually decomposed
into three components, and the formula for each component is consistent with our
prior knowledge. More generally, we use our prior knowledge to choose and define
unobserved processes with reasonable models. On the contrary, from descriptions in
Sections 2.1 and 2.2, we can hardly tell where the components come from only ac-
cording to the ARIMA formula, although the techniques are not very hard compared
with the Kalman filter and its derivatives.

Thirdly, missing values won’t cause serious problems in state space models. Dif-
ferent from X-11 or SEATS, the value of each time point is not very essential in
the Kalman filter. In Subsection 3.3.1, we have seen there are two parts at each
recursion - one is to update the prediction of the state αt and its variance when the
new observation yt is available, and another one is to predict the state αt+1 and its
variance before we input yt+1 to the system. Hence if we do not have one particular
observation say yt, then we could just skip the update step and use the prediction
from the last step as the updated result.

At last but not least, as what we showed in Section 3.2, state space modelling
is a more general modelling methodology compared with ARIMA modelling. Every
ARIMA model could be transformed into a state space form but only part of SSMs
have their ARIMA forms. In other words, ARIMA models only work for linear pro-
cesses but SSMs can be used to denote nonlinear processes, which are very common
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in real problems such as target tracking. And there exist some good methodologies
proposed to solve nonlinear SSMs. However, we need to pay the price for the com-
plexity of the model. With the parameter increasing, the computational time is a
considerable problem.



Chapter 4

Bayesian analysis

4.1 Introduction

To apply the Kalman filter over a SSM, we need to know all the parameters in-
cluding Zt, Ht, Tt, Rt and Qt. Because we usually don’t know the variance matrix
Qt and Ht in practice, one common estimator of them is the maximum likelihood
estimator (abbreviated to MLE). The problem is we find the decomposition result
from it is not good under the assumption that the decomposition from X-11 is our
standard, especially for the trend series. On the other hand, we find some parameter
values chosen manually behaves quite good, thus we believe there is some problem
happened within the parameter estimate process. So how to fix it?

Because the essential of our problem is to find another appropriate parameter
estimation while the MLE is broken, we guess the Bayesian analysis should be able
to improve our estimation a lot if we have a strong prior. But how to find such a
prior?

As we know, our purpose is to use SSMs to obtain the similar decomposition
result compared with those from X-11 with regard to the same dataset. And X-
11 has been used since the appearance of the seasonal adjustment problem, which
could be viewed as a very reliable method and a combination of expert knowledge.
Therefore, we shall build an informative prior upon the information supplied by
X-11. In the Bayesian framework, this process is known as prior elicitation ([Albert
et al., 2012]). On the other hand, we observed that SSMs behave better than X-11 for
the prediction problem. Therefore, under the Bayesian analysis with an informative
prior, we could “merge” the characteristics of X-11 with SSMs.

To be specific, Section 4.2 will introduce the deficiency of maximum likelihood
estimators (abbreviated to MLEs) by comparing its decomposition results with the
X-11’s through a real instance. And Section 4.3 shows that we could force the SSM
to generate satisfying result by minimizing some loss functions. Then we use Section
4.4 to explain how we can reduce the computation and illustrate our problem again
through one simulated example, which is also used frequently in the following anal-
ysis. In Section 4.5, we will explain the intuition why we apply Bayesian inference
and utilize a weakly-informative prior to compute posterior estimators and compare
them with MLEs. Later in Section 4.6 we shall explain why we would like to use
empirical Bayesian analysis and how to make use of the prior knowledge gained from
Section 4.3 to build an empirical prior. Meanwhile, we will introduce the weight k
of the priors, which is used to control the posterior estimate. Section 4.7 shows if we
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already have a good weight k0 upon the current dataset, how we could adjust the
weight k when facing datasets of different lengths. In Section 4.8, we shall finally
compare all these estimators’ decomposition and prediction accuracy together to
verify our explanation of the empirical MAP estimators.

Before moving on, let’s review the model and notations we used in our work. In
Section 3.1 and Section 3.2, we have introduced the general expression of a state
space model:

yt = ZtXt + εt εt ∼ N(0, Ht),

Xt+1 = CtXt +Rtηt ηt ∼ N(0, Qt),
(4.1)

where t = 1, . . . , n, and X1 ∼ N(a1, P1). Note: To avoid the confusion, we re-denote
the transition matrix as Ct in model 4.1, because we need to use Tt to express the
trend series. In this chapter, we let:

Xt =
[
Tt St St−1 · · · St−s+2

]′
, εt = It,

Zt =
[
1 1 0 · · · 0

]
, Ct =



1 0 0 · · · 0 0
0 −1 −1 · · · −1 −1
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


,

Rt =


1 0
0 1
...

...
0 0

 , Qt =

[
σ2
T 0
0 σ2

S

]
, Ht = σ2

I ,

where t = 1, . . . , n. Then we could derive the state space model applied in our
research:

yt = Tt + St + It,

Tt+1 = Tt + ηt,

St+1 = −
s−1∑
j=1

St+1−j + ωt,

(4.2)

where It, ηt and ωt are independent and identically distributed gaussian noises with
mean 0 and variances σ2

I , σ
2
T , σ2

S. In this chapter, we shall use SSM(σ2
I , σ

2
T , σ

2
S) to

express the model 4.2 with given variances at σ2
I , σ

2
T , σ2

S for a given dataset and use
σ2 to express the variance combo (σ2

I , σ
2
T , σ

2
S).

4.2 Behaviour of maximum likelihood estimators

In Chapter 3 and Section 4.1, we have noticed that there are some parameters in the
state space model such as σ2

I , σ
2
T and σ2

S in model 4.2 and the variance matrix Ht and
Qt in model 4.1. According to the algorithms showed in Section 3.3, the Kalman
filter only works when these parameters are known, so we need some approaches
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to infer them if they are not given. In this section, we shall show the common
estimator, the maximum likelihood estimate, behaves bad in SSMs when used for
decomposition in some cases, see Figures 4.1 and 4.2. As we will see, the fluctuation
of the trend series is too large sometimes, which is not consistent with people’s
prior understanding of the trend, that is, the trend component should be smooth
relatively. Mathematically speaking, the variance of the differenced series {Tt+1−Tt}
from SSM 4.2 is too large. More illustration can be found after Figure 4.2.

Now let’s look at the log-likelihood expression. Suppose we have a general state
space model:

yt = Ztαt + εt, εt ∼ N(0, Ht),

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt),

where t = 1, . . . , n, and α1 ∼ N(a1, P1), the log-likelihood of {y1, . . . , yn} given
θ = ({Zt}, {Ht}, {Tt}, {Rt}, {Qt}) is

`(θ) = log(p(y1, y2, ...yn|θ)) = log(p(y1|θ)
n∏
t=2

p(yt|Yt−1, θ)) =
n∑
t=1

log(p(yt|Yt−1, θ)),

(4.3)
where Yt = y1, · · · , yt and p(y1|Y0, θ) = p(y1). In Section 3.3 and Appendix A, we
could obtain yt|Yt−1, θ ∼ N(Ztat, Ft) and vt = yt − Ztat, where at is the prediction
of states at time t and Ft = V ar(yt|Yt−1, θ) = V ar(vt|Yt−1, θ) = ZtPtZ

T
t + Ht, thus

equation 4.3 could be written as

`(θ) = −np
2
log2π − 1

2

n∑
t=1

(log|Ft|+ v′tF
−1
t vt), (4.4)

where p is the dimension of the state αt. For a univariate problem, equation 4.3
would be

`(θ) = −n
2
log2π − 1

2

n∑
t=1

log(Ft + v2tF
−1
t ). (4.5)

As in most cases, the default estimator in SSMs is the value that maximize the
log-likelihood 4.5. To compute the MLE, there are several methods introduced in
Chapter 7, [Durbin and Koopman, 2012]. Here, we use the function fitSSM provided
in package KFAS to compute the MLEs, which is wrapped by functions optim and
logLik, see [Helske, 2016] for details. In practice, we usually do not know the variance
matrices Qt and Ht, and the others such as Zt, Tt and Rt are usually known.

Let’s take the unemployment data (by the thousand) of the United States from
1990 to 2016 as an example. Figure 4.1 is the comparison of decomposition results
from X-11 and the SSM with MLEs. To have a closer look, we extracted the interval
from 2000 to 2004, see Figure 4.2.
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Figure 4.1: Decomposition comparison between X-11 and SSM(MLE)

Figure 4.2: Decomposition comparison between X-11 and SSM(MLE) from 2000 to
2004

As we can see, the difference of the trend series from X-11 and SSM (MLE)
is obvious, where the result from the SSM is much spikier. In economics, people
would like to believe and see a relatively smooth trend instead of a spiky one, and
the regular and irregular fluctuation should be mainly absorbed by the seasonal
and irregular components separately. Meanwhile, when analysing one time series
dataset, people usually care more about the seasonally adjusted and trend series.
If the dataset is highly volatile, the seasonally adjusted series may not be enough
to analyze or make a decision since the irregular series influence too much. In
those cases, we need to use the trend series for analysis. However, as we have seen,
the decomposition based on maximum likelihood estimation is apparently not good
enough.

From Figures 4.1 and 4.2, we may wonder whether this problem is raised by
SSMs inherently or the parameter estimation we chose. The latter turns out to be
the case: if we let σ2 = (1, 1, 1), decomposition results would be closer to those from
X-11 (see Figure 4.3). More generally, adjusting our parameters allows us to shift
fluctuations between these three components, allowing us to arbitrarily increase or
decrease spikiness.

This case tells us that we can use SSMs to get close to X-11 but can’t achieve
it with MLEs. Consequently, if we want to use the SSM to obtain decomposition
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Figure 4.3: Decomposition comparison among X-11, SSM(MLE) and SSM(1,1,1)
from 2000 to 2004

results similar to those from X-11, the maximum likelihood estimator may not be a
good choice, which means we need to find other approaches to replace MLEs in the
SSM.

4.3 Loss functions and optimization

In this section, we shall explore a loss-based method to generate decomposition re-
sults similar to those from X-11 instead of choosing numbers manually like we did at
the end of Section 4.2, where we have also showed the default (MLE) decomposition
result from the SSM and the Kalman filter is not satisfying. And in Chapter 1 and
Section 3.1, we said our final goal is to only use SSMs and the Kalman filter to
generate the seasonally adjusted and trend series as close as possible to X-11 de-
composition. Here, we first propose some loss functions to check whether we could
obtain ideal parameter estimation by minimizing the loss. In Sections 4.5 and 4.6,
we shall further utilize the loss function to transform experts’ knowledge and build
a prior.

We have mentioned that we mainly care about the seasonally adjusted and trend
series in practice. Since the seasonally adjusted series is the original dataset minus
the seasonal component, thus their absolute values of differences of each two adjacent
points are equal. Then we define our first loss function as:

L1(σ
2) = ‖TX11 − TSSM(σ2)‖22 + ‖SX11 − SSSM(σ2)‖22, (4.6)

where σ2 = (σ2
I , σ

2
T , σ

2
S). TSSM(σ2), SSSM(σ2) are the trend and seasonal series we

obtained from the state space model with corresponding variance σ2, and TX11, SX11

are results from X-11 with the same observation.
To optimize the loss function, the common technique is the gradient descent. As

what we proved in Section 3.3, the trend and seasonal series from the Kalman filter is
obtained from two recursive and complicated processes, the filtering and smoothing
process. Although TSSM(σ2) and SSSM(σ2) could be expressed with regard to σ2

theoretically, the expression would be very complicated. Thus it is difficult to take
the derivative, which means the gradient descent is hard to be applied here.

An alternative choice is to use the grid search to find the best value but it is
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too time-consuming if we want to have a good precision. Finally, to accelerate
our calculation, we adopt one derivative-free optimization algorithm, Hooke-Jeeves
algorithm to solve this black-box optimization problem, see [Varadhan et al., 2016].

Now let’s still focus on the monthly unemployment data of U.S. from 1990 to
2016. After calculating regarding L1, the values of parameters σ2

I , σ
2
T and σ2

S with
the lowest loss are 3.93750, 2.90625 and 1.87500, whereas the MLEs are 2.664035,
64895.19 and 0.01197881 separately. As we will see in Figure 4.4, parameters ob-
tained by optimizing loss functions behave better than MLEs (we shall give another
loss function 4.7 later).

In Section 4.2, we have seen one main problem is that the trend series from
MLEs is not smooth enough, so we add a new term to penalize the smoothness of
the trend series. If we view the series y1, y2, . . . , yt as a function yi = f(i) of the
index i, then we define the operator D(yi, yi+1) = yi+1 − yi, which could be viewed
as a natural discrete analogue of the derivative of f at i. Therefore, to force the
smoothness of the trend series from SSM to be similar to that from X-11, we could
use the penalty term ‖D(TX11)−D(TSSM(σ2))‖22 as a measurement of the difference
between the derivative of two trend series. To sum up, we introduce a new loss
function:

L2(σ
2) = ‖TX11− TSSM(σ2)‖22 + ‖SX11− SSSM(σ2)‖22 + ‖D(TX11)−D(TSSM(σ2))‖22,

(4.7)
where σ2 = (σ2

I , σ
2
T , σ

2
S). The optimal parameter values from loss function L2 are

4.46875, 3.00000 and 2.31250. Table 4.1 gives the trend and seasonal components’
squared L2 error separately between different estimates for SSM (MLE, LOSS1 or
LOSS2) and X-11. For example, the number 7525182 located at (Trend, MLE) is
the sum of squared error of the trend series from the X-11 and the SSM with MLEs.
Figure 4.4 is the comparison of the decomposition results from 2000 to 2004, and
Figure 4.5 gives the comparison of variability proportions from three components.

MLE LOSS1 LOSS2
Trend 7525182 822060 823149

Seasonal 3333002 1010155 1022638

Table 4.1: Trend and Seasonal components’ error(unemployment)

Figure 4.4: Decomposition comparison between X-11 and SSMs from 2000 to 2004
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Figure 4.5: Variability proportions absorbed by three components

Table 4.1 and Figure 4.4 show that the decomposition from both loss functions
fits better compared with the result from MLEs, and the distinction between the
two loss functions is not obvious either. Note: in the following text, we adopted L2

as our default loss function if not specified.
So far we have realized defining an appropriate loss function allows us to re-

produce the classical decomposition result but we also notice that our loss function
is dependent on the first fitting the dataset to X-11. If we stop here and utilize
the loss function to find the optimal values of parameters in the state space model,
essentially speaking we are just putting another model and methodology around the
X-11. The nature of it is still X-11 instead of state space models and the Kalman
filter. Therefore, how to avoid using X-11 to obtain the same or similar estimators
from the loss function is our main problem now. We shall talk about it in Sections
4.5 and 4.6.

4.4 Simplification of parameters in SSMs

Recall the model applied in our paper is

yt = Tt + St + It, It ∼ N(0, σ2
I )

Tt+1 = Tt + ηt, ηt ∼ N(0, σ2
T )

St+1 = −
s−1∑
j=1

St+1−j + ωt, ωt ∼ N(0, σ2
S)

where t = 1, . . . , n, {yt} is our observation and {Tt}, {St} and {It} are the trend,
seasonal and irregular components. In Section 4.3, we computed three variances
when optimizing the loss function and maximizing the likelihood. In this section,
we shall talk about the reason why we could only estimate two instead of all the
three variances σ2

I , σ
2
T and σ2

S. Although we only reduce one parameter here, this
would benefit our computation a lot. Then we give an example to pave the way for
Sections 4.5 and 4.6.

In signal processing, the signal-to-noise ratio ρ is defined as the ratio of the
signal variance and noise variance. In [Skagen, 1988], D.W. Skagen pointed out if
the signal-to-noise ratio ρ stays constant, the different values of the signal and noise
variances will have the same decomposition result after applying the Kalman filter.

Corresponding to our model, ρ is (
σ2
T

σ2
I
,
σ2
S

σ2
I
). In fact, it is not hard to understand the
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ratio of these components’ variances plays a more crucial role when decomposing,
because no matter how large the variances are, the sum of components in every
moment is fixed. Thus, without loss of generality, we fixed σ2

S = 1 and focus on the
estimation of σ2

T and σ2
I in this paper.

Until now we only worked on a certain dataset ’unemployment’. To make our final
conclusion more convincing, in the following analysis, we shall compare the overall
performance on many datasets. Specifically, we shall compare the distributions of
the parameter estimations of numerous datasets. At the same time, to guarantee
the comparability and make these distributions sensible, all datasets used in each
experiment will be simulated from the same or similar state space models. We shall
talk more in Section 4.5.

In the following figure, we simulated 1000 monthly time series data sets at length
180 (15 years) from SSM(20,10,1) and then use the first 14 years’ data to compute
the MLEs and optimal values of σ2

I and σ2
T with regard to the L2 (we need the

data of the last year to test the prediction accuracy in Section 4.8. In the following
decomposition analysis and examples regarding these datasets, we will only use the
first 14 years unless otherwise noted). Then we obtained their distributions, see
Figure 4.6.

Figure 4.6: Distributions of variance estimators

As we can see, differences of estimators from two methods are prominent in this
case. To be specific, because our datasets are simulated from SSM(20, 10, 1), the
distributions of MLEs of σ2

I and σ2
T are approximately normal with mean 20 and 10

separately. However, when computing the loss-based estimators, our standard is the
decomposition result from X-11, whose theory is totally different. Thus we could
see the distributions of these estimators seems to be irrelevant to the true value 20
and 10. In fact, after a lot of simulations, we found the distributions of optimal
parameters with regard to our loss function do not change too much (See Section
4.6 and Chapter 5) even though variance values σ2

I , σ
2
T , σ

2
S used for simulation differ

a lot.
Since our goal is to use SSMs to obtain the similar decomposition in terms of

X-11, the next two sections basically talk about how we push the black lines (MLE)
to the red line (optimal) without actually fitting an X11 model to each dataset.
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4.5 Bayesian analysis

In Section 4.2, we have showed the drawback of the classical estimate MLE. In Sec-
tion 4.3, we have proved the loss function could help us to find suitable parameter
estimation, but we still need to count on X-11 or other existing methods. In this
section, we will consider our problem from the Bayesian perspective to avoid the de-
pendence of other methods. Specifically, we shall talk about why we adopt Bayesian
analysis and how we use the prior elicitation to build our own priors. Then we will
check whether the Bayesian inference works through a simple example in the end.

Let’s first review Bayesian inference briefly: suppose g(θ) is the prior distribution
of parameter θ and the likelihood function of observations {y1, . . . , yn} given θ is
f(y1:n|θ), then the posterior distribution of θ is proportional to the product of them,
that is:

g(θ|y1:n) =
g(θ)f(y1:n|θ)
f(y1:n)

, (4.8)

which is equivalent to

log(g(θ|y1:n)) = log(g(θ)) + log(f(y1:n|θ)) + constant. (4.9)

In this paper, we will use the maximum a posterior estimator (abbreviated to
MAP) as the posterior parameter estimator, which could be viewed as the the ana-
logue to the maximum likelihood estimator:

θMAP = arg max
θ

g(θ|y1:n)

= arg max
θ

g(θ)f(y1:n|θ)

= arg max
θ

[log(g(θ)) + log(f(y1:n|θ))],

θMLE = arg max
θ

log(f(y1:n|θ)).

(4.10)

In Bayesian inference, we treat each parameter as a variable and this allows pa-
rameters to have their own distribution. At the same time, we are allowed to consider
our prior knowledge of parameters when estimating them. Generally speaking, the
prior knowledge is what we already know from history or experience before dealing
with real observations. From this point of view, we may make use of the information
of loss-based optimal estimators to build our prior distributions.

On the other hand, it is not hard to understand that datasets belonging to the
same category in economics usually have the similar trend and seasonal patterns
like different brands of electronic products usually achieve sales peak in December
every year and ice-cream manufacturers usually need to produce more ice-cream
every summer. Furthermore, if the magnitudes of these datasets don’t have a huge
difference, like the sales of these different brands belong to the same level, then
we have reasons to believe these datasets should share similar parameters, or their
parameters should follow some particular distribution. In fact, this is exactly the
key idea of partial pooling, see Section 3.4 and [Guerzhoy, 2016].

Therefore, suppose we have abundant datasets from the same economic category,
by computing the optimal loss-based estimators in Section 4.2, we could obtain the
distributions of these estimators. And when we meet new datasets from the same
category, we could use the distributions derived before as our priors. In Bayesian
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analysis, we call them empirical prior distributions, because they are obtained from
data directly. We shall talk more about them in Section 4.6.

Before applying empirical prior distributions, let’s first use the weakly-informative
prior as a simple example to check the effect of Bayesian analysis and see what will
happen. Readers should notice that we don’t expect the influence to be obvious at
this time and this weakly-informative prior attempt doesn’t have a relation to our
core work. Even if the weak prior does influence our inference in some cases, we
should remember it won’t always work when encountering larger datasets, since the
MAP converges to MLE as sample size increases for a fixed prior, see Section 4.7.
An illustrative example 4.5.1 is given below.

Example 4.5.1. In Section 3.4, we have said the state space model could be re-
garded as a special type of hierarchical models. In [Gelman et al., 2006], Gelman
talked about prior distribution choices for variances in hierarchical models. Based
on his conclusions, we shall use the half-normal distribution as weakly-informative
priors for standard deviations σI and σT . The reason why we didn’t adopt the rec-
ommended half-Cauchy is that distributions of loss-based estimators do not have a
heavy tail (this argument could also be verified by Figures 5.2 and 5.3). Note: the
distribution we drew before is for the variance σ2 instead of the standard deviation.

Specifically, for datasets simulated from the SSM(20, 10, 1), according to the
red line in Figure 4.6, we know the optimal loss-based estimators for σ2

I and σ2
T

are mainly distributed over [0,40] and [0,10]. Thus with three-sigma rule, the vari-

ances we set up for half-normal distributions are
√
40
3

and
√
10
3

. Then we computed
corresponding MAP estimators. The distribution comparison of MLEs, posterior
estimators and optimal values is showed in Figure 4.7.

Figure 4.7: Comparison of variance distributions

To further show the difference between three estimators, we drew Table 4.2,
Figures 4.8 and 4.9 by defining the decomposition error Er(σ2), where Table 4.2
shows the median, mean and standard error of three different errors, Figure 4.8 is
the corresponding box plot and Figure 4.9 is the comparison of three density curves
(Note: MAP(hnormal) in Figure 4.8 means the MAP estimator from the half-normal
priors).

Er(σ2) = ‖TX11 − TSSM(σ2)‖22 + ‖SX11 − SSSM(σ2)‖22. (4.11)



CHAPTER 4. BAYESIAN ANALYSIS 33

MLE Loss MAP
Median 761.9 645.2 715.2
Mean 785.2 657.1 733.3

sd 207.11 150.54 179.84

Table 4.2: Information of decomposition error

Figure 4.8: Boxplots of decomposition errors

Figure 4.9: Densities of decomposition errors

Black, red and blue curves stand for MLE, Loss and MAP separately

According to these results, we have the reason to believe that a weakly-informative
prior could help us improve the decomposition results on the basis of MLEs. Now
let’s move forward to talk about the informative prior.

4.6 Empirical prior distributions

In Section 4.5, we have said we could compute the distributions of loss-based esti-
mators as empirical priors and apply them when meeting new similar datasets. And
we also have seen the weakly-informative prior, the half-normal distribution could
help improve the decomposition results. In this section, we shall further explore the
MAP estimators from the empirical priors and continue with Example 4.5.1 to test
the effect of empirical priors. As we know, in Bayesian analysis, with the amount of
data increasing, the influence of the prior distribution upon the posterior estimators
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will be weaker, see Example 4.7.1. To control its influence, we will intro duce a user-
defined weight k regarding the log-prior in the end of this section. Mathematically,
k corresponds to the effective sample size of the prior.

As what we will see in Section 4.8, SSMs seem to have better predictive accu-
racy, while experts at Statistics Canada tell us that they prefer the decompositions
returned by X-11. So how to find a method that has the best properties of both
X11 and SSMs? Since SSMs could match X-11 for some choice of parameters, the
obvious approach is to try to encode the expert opinion as a prior for the SSMs, and
then apply the Bayesian analysis in our problem. As what we have said in Section
4.5, the simplest approach is to build a prior with the parameters whose decom-
position result is ”close” to the result of X-11, where ”close” is measured by some
loss function of statistical relevance. This is very similar to the general approach of
Approximate Bayesian Computation (see [Turner and Van Zandt, 2012]) and more
specifically to previous work on prior elicitation from experts (see [Albert et al.,
2012]).

Example 4.6.1. Continuing with Example 4.5.1, we simulated another 3000 datasets
from SSM(20, 10, 1) as the history data and computed the distributions of the es-
timators with the lowest loss defined by the loss function 4.7 as empirical priors.
The 1000 simulated datasets mentioned in Section 4.3 will be used as new datasets
and to calculate different types of estimators. Then we compared these estimators’
distribution to check the effect of empirical priors.

Figure 4.10 is the empirical distributions of σ2
I and σ2

T we obtained from 3000
simulated datasets after using the Gaussian kernel density estimation and their
parametric approximations. Here, we use two piecewise functions to approximate
them:

g(σ2
I ) =

{
1√

2π·2.9exp(−
(σ2

I−8.8)
2

2·2.92 ) if 0 < σ2
I < 14.5,

0.2 · exp(−0.2σ2
I ) if σ2

I ≥ 14.5,
(4.12)

g(σ2
T ) =

{
1√

2π·0.83exp(−
(σ2

T−2.46)
2

2·0.832 ) if 0 < σ2
T < 4.2,

exp(−σ2
T ) if σ2

T ≥ 4.2,
(4.13)

Figure 4.10: Empirical prior distributions

Note: The raw empirical distributions have a few discontinuity points at the tails.
If we use them as priors directly, the posterior estimator will not take these points
and this would make the distribution of the MAP estimator having a lot of different
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peaks. Hence without loss of generality, we approximate them with parametric
functions to make them smooth. Although both parametric approximations are
improper (the integral of each piecewise function is not 1 over the domain), this
won’t influence our final inference, because we need to take the logarithm to compute
the MAP estimator in the end.

Then we used approximated distributions as our priors g(θ) and computed the
corresponding MAP estimators by equation 4.10, that is

θMAP = arg max
θ

[log(g(θ)) + log(f(Yn|θ))].

As shown in Figure 4.11, the red line is our target, the black line is the MLEs’
distribution and the two blue lines are MAPs’ distributions from weakly-informative
priors (denoted by MAPhnor) and empirical priors (denoted by MAPemp):

Figure 4.11: Comparison of variance distributions (2)

It seems for some datasets, their MAP estimators have changed because of the
influence of priors, but for the others, the MAP estimators barely changed especially
for σ2

I . The reason for this phenomenon is the magnitude of the log-likelihood is too
large and as a result the posterior estimate is not very sensitive to small numbers.
That is: the log-prior is much smaller than the log-likelihood (in absolute value).

To test the difference among these estimators, we also computed the median,
mean and standard error of the decomposition error, like what we have done in
Example 4.5.1. And it showed that the decomposition result from the empirical
posterior estimator did improve the decomposition result compared with MLEs, but
didn’t have an obvious improvement compared with results from the half-normal
distribution (see Appendix B).

Like we said in Example 4.6.1, our MAP estimator is mainly controlled by the
(log)likelihood, in another word, the influence of priors is too weak. Suppose we
have more confidence with our prior compared with the likelihood, then to enlarge
the influence of priors, we could put more weights on the prior distributions, that
is:

θ∗MAP = arg max
θ

[k · log(g(θ)) + log(f(Yn|θ))], (4.14)

where k is the weight we put on the prior distributions. Later in Section 4.8, we shall
see the prediction of SSMs is more accurate than results from X-11. Thus if k = 1,
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θ∗MAP is the MAP estimator from the standard Bayesian inference; if k > 1, we put
more weights on the prior distributions, in another word, we think more of X-11
and the decomposition result; if k < 1, we put more weights on the likelihood of
sample Yn, or we could say we care more about the prediction. Users could tweak k
according to their demand. Tables 4.4 and 4.5 in Chapter 4.8 will give the variation
of the means and standard deviation of the decomposition error and the prediction
error for different k. We will talk more about the weight k in Section 4.7.

4.7 Weight adjustment for different lengths

Suppose we already know the empirical priors g(θ) for one specific dataset and a
good weight k, but when facing a new dataset, the previous setting could be useless
because the likelihood changes. So we need to extend our method to more general
cases if we don’t want to re-calculate the empirical prior or the prior weight endlessly.
In this section, we shall talk about how to deal with a new dataset at a different
length. In the real life, we often have various datasets from the same category, but
due to the different start date recorded in history, they often don’t have the exactly
same length. Meanwhile, for one specific dataset, its length is also increasing as time
goes on. In Section 4.6, we realized we may achieve a satisfying result by adjusting
weights on the prior distribution. But the log-likelihood is related to the sample size
n, as we can tell from equation 4.5. Thus we need to tweak k when datasets have
different length. But we do not expect to spend time seeking a good weight k every
time. Ideally speaking, if we find the rules of log-likelihood changes for different
lengths, we will know how to change k as well. An illustrative example is given
below.

Example 4.7.1. Suppose we have the sample x1, x2, . . . , xn from the distribution
Bernoulli(θ), that is, P (x1, x2, . . . , xn|θ) = θ

∑
xi(1− θ)n−

∑
xi , and the prior on θ is

Beta(α, β), where P (θ) ∝ θα−1(1− θ)β−1, and α and β are constants. Then we can
show the MAP estimator of θ is

θ
(0)
MAP = arg max

θ
[log(θα−1(1− θ)β−1) + log(θ

∑
xi(1− θ)n−

∑
xi)]

=
α− 1 +

∑n
i=1 xi

α + β − 2 + n
. (4.15)

If we extend the length of our sample to 2n, the MAP estimator would be

θ
(1)
MAP =

α− 1 +
∑2n

i=1 xi
α + β − 2 + 2n

. (4.16)

Out of some purposes, suppose we want to keep the new estimator θ
(1)
MAP around the

value of θ
(0)
MAP , then by multiplying the log-prior probability by 2, we could obtain

θ
(2)
MAP = arg max

θ
[2 · log(θα−1(1− θ)β−1) + log(θ

∑
xi(1− θ)2n−

∑
xi)]

=
2(α− 1) +

∑2n
i=1 xi

2(α + β − 2) + 2n
.

(4.17)

Since x is a Bernoulli distribution,
∑2n

i=1 xi should approximate 2
∑n

i=1 xi. Thus,

θ
(2)
MAP approach to θ

(0)
MAP as n increases. In this example, we could find if we
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don’t want to change the existing posterior estimator when meeting another similar
dataset at a different length, we could use the ratio of two datasets’ length as the
weight for our prior.

Remark: For the Bernoulli distribution, we know the MLE of θ is
∑n

i=1 xi
n

, so
based on equation 4.15, θMAP → θMLE, as n→∞. This also explains why we want
to put a weight on the prior distribution when we have more confidence with our
prior information instead of the likelihood function.

Now let’s look at the log-likelihood of our state space model. We have showed
in Section 4.2, for univariate cases, the log-likelihood is

`(θ) = −n
2
log2π − 1

2

n∑
t=1

log(Ft + v2tF
−1
t ).

And based on Lemma 3.3.1, we know Pt → P̄ as t increases, when matrices such
as Zt and Ht in SSMs are time-invariant. Since Ft = ZtPtZ

′
t, thus Ft → F̄ as Pt

converge to P̄ . And in Section 3.3, it is not hard to derive E(vt) = 0. Therefore,
intuitively speaking, the log-likelihood `(θ) should be a linear function regarding
length n approximately. To check our hypothesis, for the same dataset, we fixed
variances in the state space model at different sets and plotted the figure of its log-
likelihood with regard to its length, see Figure 4.12 (the dataset is simulated from
SSM(20, 10, 1) at length 360). Table 4.3 shows the log-likelihood at different length
for these SSMs.

Figure 4.12: Relations between log-likelihood and length

(20,10,1) (40,20,2) (60,30,3) (80,40,4) (100,50,5)
180 (15 years) -580.7678 -597.334 -617.5942 -634.9026 -649.5577
360 (30 years) -1182.5489 -1218.846 -1261.2929 -1297.2977 -1327.6936

Table 4.3: Log-likelihood under different length and variances of the same dataset

As we have seen, for the state space model with fixed variances, the log-likelihood
is approximately direct proportional to the length n.
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Combined with the conclusion we drew in Section 4.6, given the sample Yn at
length n, an empirical prior distribution g(θ) and the log-likelihood function `(θ) as
log(f(Yn|θ)) in equation

θMAP = arg max
θ

[k · log(g(θ)) + log(f(Yn|θ))],

suppose we already know k0 could help us have a good result under Yn, g(θ) and
`(θ), then when we meet a new dataset Yn∗ from the same category, to make the
MAP estimator stable, we could let k = λk0 as the new weight on the prior g(θ),
where λ = n∗

n
, while keep others the same.

So far, we have showed we could transform the information of the linear-filter-
based method X-11 to a likelihood function by building the empirical prior distribu-
tions. And to generate decomposition results by SSMs and the Kalman filter similar
to those from X-11, we put a weight k to the empirical priors and users could tweak
k as they want. We will use Tables 4.4 and 4.5 to show the effect of different k in
Section 4.8. In this section, we showed how to tweak an existing good weight k0
when facing another new dataset at different length, if we hope our priors play the
same important role as before. In Section 4.8, we shall compare X-11 and the SSMs
with different estimators’ behaviours for prediction problem, which is another very
important part in practice as we said in Chapter 1.

4.8 Prediction Comparison

Recall in Section 4.4, we said we saved the data of the last year for the prediction
problem when using the simulated 1000 datasets from SSM(20, 10, 1). In this sec-
tion, we shall continue with Example 4.6.1, and take the weight k and the prediction
error into consideration.

Suppose y1, . . . , ys is the real data of one series over one period s, and x1, . . . , xs
is the prediction we obtained from one specific model, then we define the prediction
error as

s∑
i=1

(yi − xi)2. (4.18)

Example 4.8.1. Continued with Example 4.6.1, remember our definition of decom-
position error in Section 4.5 is

Er(σ2) = ‖TX11 − TSSM(σ2)‖22 + ‖SX11 − SSSM(σ2)‖22,

where σ2 is the variance estimator. Here, we first computed decomposition errors
under different estimators over the first 14 years’ part of the same 1000 datasets
simulated previously, including MLEs, loss-based optimal estimators, and MAP es-
timators under different weight k. Then we could obtain Table 4.4:
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median mean sd
MLE 761.9 785.2 207.1050
k=0.1 747.8 767.4 197.3232
k=0.5 716.9 734.5 180.6615
k=1 709.2 728.6 181.3250
k=2 714.8 738.5 190.3706
k=5 675.2 700.6 179.6753
k=10 662.3 680.8 155.7274
k=50 662.8 679.1 152.1393
Loss 645.2 657.1 150.5360

Table 4.4: Statistics of decomposition errors

Apparently, as we put more weight on the prior, the decomposition error of
corresponding posterior estimators would be smaller and closer to the optimal value.

For the prediction problem, we don’t need to rely on the X-11 or other conven-
tional methods anymore, thus we could add the X-11 as a new candidate besides
those in Table 4.4. And as we mentioned in Section 4.6, we found the SSMs usually
have more accurate predictions than X-11, see Table 4.5.

median mean sd
X-11 1044.4 1499.1 1319.804
MLE 947.4 1310.2 1121.327
k=0.1 944.73 1309.62 1119.985
k=0.5 843.51 1310.07 1119.356
k=1 940.13 1314.05 1123.506
k=2 945.64 1316.53 1126.389
k=5 935.54 1319.82 1129.023
k=10 935.38 1321.46 1132.451
k=50 942.5 1323.6 1133.275
Loss 946.37 1327.50 1135.614

Table 4.5: Statistics of prediction errors

As we can see, the X-11 did the worst job for prediction compared with other
state space models. And the MLEs behaves very well on the whole although the
differences among these SSMs is very tiny. There are also some existing discussion
with regard to the prediction comparison, see [Ellis, 2015].

In Section 4.6, we have explained the real meaning of the MAP estimator from
the empirical prior distribution. Now, Tables 4.4 and 4.5 could help us understand
the word trade-off better.

In conclusion, X-11 could give us the better decomposition results that are pre-
ferred by experts while the SSMs with MLEs behave better for prediction. Both
goals are reasonable but it seems we have to make a trade-off between them - we
can’t get smooth decompositions and prediction accuracy at the same time.



Chapter 5

Application

In the previous chapters, we have introduced the seasonal adjustment problem,
different methodologies, the problem we found regarding MLEs in SSMs and our
approach to improve it. In this chapter, we shall apply our method to a real dataset
unemployment (see Section 4.2) and compare its result with those from other esti-
mators or models. In the end, we will use a simple example to show how to achieve
the partial pooling with the Kalman filter and SSM.

The original dataset and its decomposition result from X-11 given in Section 2.3
are showed in Figure 5.1.

Figure 5.1: Classical decomposition of the unemployment dataset

In Section 4.2, we have seen one important motivation behind our work, which is

40
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the decomposition result from the state space model with MLEs is not friendly for
analysis, especially for the trend component. And we also have seen the comparison
regarding the seasonally adjusted series and the trend from SSMs with different
estimators and X-11 in Figure 4.4, where we found by using a sensible loss function,
we could obtain parameters with better decomposition results.

Now, to realize our method, we need two empirical prior distributions for σ2
I and

σ2
T . You may worry that we don’t have a bunch of datasets similar to unemployment

to generate empirical priors. This is a real and crucial problem in our research.
One choice to solve it is that we could use the MLEs of unemployment dataset
as parameters in the SSM, then use this SSM to simulate thousands of datasets
as the history data, and finally construct the empirical prior over them, but the
disadvantage of this method is the computation is too time-consuming and one
specific MLE may not be accurate enough to describe some class of data. Thus it
is not very practical.

On the other hand, after plenty of simulations, we found the distinction among
the empirical distributions under different cases are not very much. Figures 5.2 and
5.3 are the distributions of σ2

I and σ2
T , and Table 5.1 is the information of SSMs we

used for simulation. Therefore, without loss of generality, we could use the empirical
priors defined in equations 4.12 and 4.13 as the prior distributions for the unemploy-
ment dataset. Note: the legend idemat in Figures 5.2 and 5.3 is the abbreviation
for the ideal value matrix, which is used to build empirical priors. And simlist in
Table 5.1 is the list of simulated datasets used to compute the corresponding idemat
and each list contains 1000 datasets.

Figure 5.2: Empirical distributions of the irregular variance from 8 groups
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Figure 5.3: Empirical distributions of the trend variance from 8 groups

Name Length(yrs) σ2
I σ2

T σ2
S

simlist new 15 20 10 1
simlist2 15 100 25 1
simlist3 20 100 25 1
simlist4 15 25 100 1
simlist5 15 1 0.25 1
simlist6 15 200 100 10
simlist7 15 (N(0, 10))2 (N(0, 10))2 1
simlist8 30 (N(0, 10))2 (N(0, 10))2 1

Table 5.1: Information of SSMs used for simulation

After figuring out the empirical prior problem, we first adopted the standard
Bayesian analysis by setting weight k equal to 1. The posterior estimators of σ2

I and
σ2
T under this case are 3715.0938 and 746.4023, while the MLEs are 19.18455 and

66778.52, and the loss-based optimal parameter values (denoted as IDEAL in Figure
5.4) are 1.855240 and 1.268692 (Note: σ2

S is always fixed at 1 in these cases). As we
can see, the MLE of the noise variance for the trend is very large but the loss-based
estimator is very small. This is the reason why the smoothness of their curves is
different. Figure 5.4 gives the partial comparison of the seasonally adjusted series
and trend series from SSMs with different estimators and X-11.

Figure 5.4: Decomposition comparison from 2000 to 2004
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Visually, the trend series from the MAP estimator does look better than that
from the MLE, and is closer to X-11 result, although the difference of seasonally
adjusted series between them is not obvious. To better present the transformation,
we drew a bar diagram regarding the proportion of variability absorbed by different
components, see Figure 5.5.

Figure 5.5: Comparison of the variability proportions

Apparently, in our case, the irregular component from the state space model
with MLEs is too weak and too much variability is assigned to the trend component,
whereas the X-11 method takes care of both series and does a good trade-off! For
the empirical MAP estimator, by considering the information from X-11 as the prior,
we transformed some variability from the trend to the irregular in the context of the
state space models. Thus the trend curve is smoother and easier for analysis.

Now let’s look at their behaviours for prediction. Figures 5.6 gives the compar-
ison of predictions from three SSMs with different estimators and X-11, and the
true value from December 2015 to November 2016. And Figure 5.7 compares their
prediction with the 95% confidence interval and the true data separately. Based
on the plot, the X-11 did a bad job for prediction compared with the other two
SSMs. In addition, Table 5.2 gives their sums of the squared error denoted by Er.
Note: we used the optimal ratios to compute the decomposition before, where the
scaling is not significant, but here when drawing the confidence intervals, the scal-
ing matters. Recall that we fixed σ2

S at 1 previously. Naturally, to determine the
scaling, we could use the MLE of σ2

S given the optimal ratios obtained before. After
calculation, the MLEs of σ2

S given the ratios of the ideal and posterior cases (which
are (1.855240, 1.268692) and (3715.0938, 746.4023) respectively) are 20861.78 and
31.32604 respectively (we computed the MLEs of three variances directly and ob-
tained σ2 = (7.420803, 66084.02, 0.399136)).
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Figure 5.6: Comparison of predictions for the next year

Figure 5.7: Prediction with 95% confidence intervals

X-11 SSM(MLE) SSM(IDEAL) SSM(MAP)
Er 2009890 1026737 1470003 1771164

Table 5.2: Sum of the squared error

As we indicated in Section 4.8, compared with X-11’s prediction result, the
state space model using MLEs usually have better performance, while the empirical
MAP estimator is a compromise between them. But we also find one problem with
the MAP estimator now is that the true value doesn’t fall into its 95% confidence
interval.



CHAPTER 5. APPLICATION 45

In this real case, we proved that we could utilize the empirical priors to generate
decomposition results more similar to those from X-11 compared with the default
output. And this process could be achieved without using X-11 or other conventional
methods, which is the main purpose of our research. At the same time, we showed
for the prediction problem, the state space model with MLEs behaves better than
X-11, and the effect of the empirical posterior estimator is better than X-11 but
poorer than MLEs.

Now, let’s look how we can achieve partial pooling in seasonal adjustment with
the state space model and the Kalman filter. In Section 3.4, we have seen two types
of the hierarchical model for the seasonal adjustment problem. Here, we will only
use the second model 3.29 to study a simple case where the data has been seasonally
adjusted, that is, the data only contains the trend and irregular series. Reminder:
This example here may not be very appropriate to show the real functionality of
partial pooling for seasonal adjustment. Our main purpose is to prove we could
do partial pooling with SSMs and the Kalman filter for the seasonal adjustment
problem and give readers an intuitive understanding of the partial pooling.

Suppose we already know the seasonally adjusted sales data of two companies A
and B, and their trends gained from two independent SSMs are given in Figure 5.8.

Figure 5.8: Trends before partial pooling

Now let’s say we want to do complete pooling with regard to the trend at first.
In another word, we suppose both trends {T1t} and {T2t} follow the same model.
For a single dataset, suppose our initial model is

yit = Tit + εit, εit ∼ N(0, σ2
iI),

Tit = T ∗t + η1t, η1t ∼ N(0, σ2
T ),

T ∗t+1 = T ∗t + η2t, η2t ∼ N(0, σ2
T ∗),

(5.1)

where i = 1, 2 in our instance. Note: This original model above is not in a state
space form technically. Thus to solve it with the Kalman filter, we need to transform
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it to a state space form, see equations 5.2.(
y1t
y2t

)
=

(
1 0 0
0 1 0

) T1t
T2t
T ∗t+1

+

(
ε1t
ε2t

)
,

(
ε1t
ε2t

)
∼ N(0,

(
σ2
1I 0
0 σ2

2I

)
)

 T1t
T2t
T ∗t+1

 =

0 0 1
0 0 1
0 0 1

T1,t−1T2,t−1
T ∗t

+

1 0
1 0
0 1

(η1t
η2t

)
,

(
η1t
η2t

)
∼ N(0,

(
σ2
T 0
0 σ2

T ∗

)
).

(5.2)

To apply the Kalman filter, we computed the MLEs of these variance parameters
first, and obtained 803198.2, 6664.782, 3.328507 × 10−6 and 37241.81 respectively
for σ2

1I , σ
2
2I , σ

2
T and σ2

T ∗ . Then plugged them into the Kalman filter to compute two
trend series {T1t} and {T2t}, as showed in Figure 5.9. Note: Because the new SSM
contains some hyperparameters and is different from our SSM 4.2 before, we didn’t
use any empirical prior here and took the MLE as the estimator.

Figure 5.9: Trends after complete pooling

As we can see, the problem with this figure is that two trends are almost the
same to each other, which is exactly the result of complete pooling but usually not
what we want in practice.

To avoid the exactly same decomposition result but make them relevant to each
other, we allow the variances of two trend components σ2

T in equation 5.2 to be
different, then we shall have the state space model for partial pooling :

(
y1t
y2t

)
=

(
1 0 0 0
0 1 0 0

)
T1t
T2t
T ∗1,t+1

T ∗2,t+1

+ εt, εt =

(
ε1t
ε2t

)
∼ N(0,

(
σ2
I1

0
0 σ2

I2

)
)


T1t
T2t
T ∗1,t+1

T ∗2,t+1

 =


0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1



T1,t−1
T2,t−1
T ∗1t
T ∗2t

+


1 0 0
0 1 0
0 0 1
0 0 1

 ηt, ηt =

η1tη2t
η3t

 ∼ N(0,

σ2
T1

0 0
0 σ2

T2
0

0 0 σ2
T ∗

).

(5.3)

Similarly, we still adopt the MLEs (which are 7.288344, 1.842641×10−8, 7644.67,
854570.8 and 28875.73 respectively for σ2

I1
, σ2

I2
, σ2

T1
, σ2

T2
and σ2

T ∗) to apply the
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Kalman filter over the SSM 5.3, then two trend components we obtained are showed
in Figure 5.10.

Figure 5.10: Trends after partial pooling

Compared with Figure 5.8, the effect of partial pooling is to pull the previous
trends to each other; compared with Figure 5.9, it tries to make a difference between
two trend series. To show the difference of three pooling methods from another way,
we took the difference of two trends in each figure, and plotted them in Figure 5.11.
As what we expect, the difference of two trends from no pooling is very large, the
difference from complete pooling is almost zero and partial pooling’s result is greater
than zero but less than that from no pooling (in absolute value). And the correlation
of the differences from no pooling and partial pooling is 1.

Figure 5.11: Comparison of trend differences from three pooling methods

As what we said in Section 3.4, if one time series is too short, by partial pooling,
we could make use of other series information to avoid an extreme/unreliable infer-
ence. In a word, partial pooling is very useful for analysis and with SSM and the
Kalman filter, we could solve its relevant computation and make an inference easily.
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In the end, let’s consider how to put the empirical prior into the hierarchical
model. The initial problem motivated our research also appears in this example
before using partial pooling, which is that the trend series generated by the state
space model with MLEs is not smooth, see Figure 5.12. Similarly, the curves in
Figure 5.10 is not very smooth. Therefore, to make the trend series smooth, let’s
try the empirical Bayesian here.

Figure 5.12: Comparison of trends of companies A,B from X-11 and SSM(MLE)

To be specific, we still assume the previous prior distributions 4.12 and 4.13
are the priors for the irregular variance σ2

1I and σ2
2I and trend variance σ2

T∗ in the
hierarchical model 5.3. After computation, the MAP estimators of σ2

1I , σ
2
2I , σ

2
1T ,

σ2
2T and σ2

T∗ are 8.799999, 8.799999, 3448626, 1202746 and 2.470268 separately. The
final trend components are given in Figure 5.13.

Figure 5.13: Partial pooling results with empirical priors

Although results in Figure 5.13 didn’t change a lot compared with the original
partial pooling results in Figure 5.10, we can tell that it is very easy to combine
the Bayesian analysis and the hierarchical model at least. The greatest challenge
is to find a sensible prior. Since the empirical prior we used in this example is not
obtained from hierarchical models, it is understandable that it doesn’t behave well
here. It is worthy for us to explore the priors for parameters in the hierarchical time
series model in the future.
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Kalman filter

Given the content in Section 3.3, we shall show how to derive the Kalman filtering
step by step based on the general expression of a state space model below. The
whole process could also be found in Durbin and Koopman, 2012.

yt = Ztαt + εt εt ∼ NID(0, Ht) (A.1)

αt+1 = Ttαt +Rtηt ηt ∼ NID(0, Qt) (A.2)

Before giving the derivation procedure, we post a known conclusion from multi-
variate analysis:

Lemma A.0.1. Suppose X and Y are jointly normally distributed as following,

E[(x y)T ] = (µx µy)
T V ar

(
x
y

)
=

(
Σxx Σxy

ΣT
xy Σyy

)
(A.3)

then the conditional distribution of X given Y is also normal with mean

E[x|y] = µx + ΣxyΣ
−1
yy (y − µy) (A.4)

and variance matrix
V ar[x|y] = Σxx − ΣxyΣ

−1
yy ΣT

xy (A.5)

A.1 Filtering process

It’s not hard to show the expectation of vt given Yt−1 is 0, then with Lemma A.0.1
applying on αt and vt given Yt−1, we could show

at|t = E(αt|Yt−1) + Cov(αt, vt)V ar(vt)
−1vt

where

Cov(αt, vt) = E(αt(Ztαt + εt − Ztat)′|Yt−1)
= E(αt(αt − at)′Z ′t|Yt−1)
= PtZ

′
t

V ar(vt|Yt−1) = V ar(Ztαt + εt − Ztat|Yt−1)
= ZtPtZ

′
t +Ht

= Ft
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thereby,
at|t = at + PtZ

′
tF
−1
t vt

Similarly, by Lemma A.0.1 we derive another update equation

Pt|t = V ar(αt|Yt)
= V ar(αt|Yt−1, vt)
= V ar(αt|Yt−1)− Cov(αt, vt)V ar(vt)

−1Cov(αt, vt)
′

= Pt − PtZ ′tF−1t ZtPt

Now let’s look at how to predict the state at time t+1:

at+1 = E(αt+1|Yt)
= E(Ttαt +Rtηt|Yt)
= TtE(αt|Yt)
= Ttat|t

Pt+1 = V ar(Ttαt +Rtηt|Yt)
= TtV ar(αt|Yt)T ′t +RtQtR

′
t

= TtPt|tT
′
t +RtQtR

′
t

With update equations we obtained above and the Kalman gain Kt = TtPtZ
′
tF
−1
t ,

we could have the final version of our prediction equation:

at+1 = Ttat +Ktvt

Pt+1 = TtPt(Tt −KtZt)
′ +RtQtR

′
t

Sometimes Zt, Tt, Ht, Rt and Qt are time-invariant, then we can show that the
variance matrix Pt converges to a constant matrix P̄ , which is the solution to

P̄ = T P̄T ′ − T P̄Z ′F̄−1ZP̄T ′ +RQR′ (A.6)

where F̄ = ZP̄Z ′ +H.

A.2 Smoothing process

Define xt = αt − at, then

vt = yt − Ztat = Zt(αt − at) + εt = Ztxt + εt (A.7)

Meanwhile,

xt+1 = αt+1 − at+1

= Ttαt +Rtηt − Ttat − ktvt
= Tt(αt − at) +Rtηt −KtZtxt −Ktεt

= Ttxt +Rtηt −KtZtxt −Ktεt

= Ltxt +Rtηt −Ktεt

(A.8)

where Lt = Tt −KtZt
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Denote vt:n = (v′t, . . . , v
′
n). We apply Lemma A.0.1 for αt and vt:n, then we have

α̂t = E(αt|Yn) = E(αt|Yt−1, vt:n)

= at +
n∑
j=t

Cov(αt, vj)F
−1
j vj

(A.9)

where

Cov(αt, vj) = E(αtv
′
j|Yt−1)− E(αt|Yt−1) · E(v′j|Yt−1)

= E(αt · (Zjxj + εj)
′|Yt−1)

= E(αt · x′j|Yt−1) · Z ′j

(A.10)

Meanwhile,

E(αtx
′
t|Yt−1) = E(αt(αt − at)′|Yt−1) = Pt

E(αtx
′
t+1|Yt−1) = E(αt(Ltxt +Rtηt −Ktεt)

′|Yt−1) = PtL
′
t

...

E(αtx
′
n|Yt−1) = PtL

′
tL
′
t+1 · · ·L′n−1

(A.11)

Substituting Equation A.9 with A.10 and A.11, we shall have

α̂n = an + PnZ
′
nF
−1
n vn (A.12)

α̂n−1 = an−1 + Pn−1Z
′
n−1F

−1
n−1vn−1 + Pn−1L

′
nZ
′
nF
−1
n vn (A.13)

... (A.14)

α̂t = at + PtZ
′
tF
−1
t vt + PtL

′
tZ
′
t+1F

−1
t+1vt+1 + · · ·+ PtL

′
tL
′
t+1 · · ·L′n−1Z ′nF−1n vn

(A.15)

Let rn−1 = Z ′nF
−1
n vn, rn−2 = Z ′n−1F

−1
n−1vn−1+L′n−1Z

′
nF
−1
n vn, ..., rt−1 = Z ′tF

−1
t vt+

L′tZ
′
t+1F

−1
t+1vt+1 + · · · + L′tL

′
t+1 · · ·L′n−1Z ′nF−1n vn, then we could derive the relation

between rt−1 and rt is

rt−1 = Z ′tF
−1
t vt + L′trt wheret = n, . . . , 1 (A.16)

then we could substitute Equation A.9 with

α̂t = at + Ptrt−1 (A.17)

rt−1 = Z ′tF
−1
t vt + L′trt (A.18)

where t = n, . . . , 1 and rn = 0. This is the derivation for the state smoothing
process.

Now let’s look at the variance matrix. We still rely on Lemma A.0.1, it’s not
hard to know

Vt = V ar(αt|Yt−1, vt:n) = Pt −
n∑
j=t

Cov(αt, vj)F
−1
j Cov(αt, vj)

′ (A.19)

then we could substitute with Equation A.10 and A.11 again, and repeat the similar
smoothing treatment as what we did for the state αt. In the end we could replace
Equation A.19 with

Vt = Pt − PtNt−1Pt (A.20)

Nt−1 = Z ′tF
−1
t Zt + L′tNtLt (A.21)

where t = n, . . . , 1 and Nn = 0. This is the smoothing process for the state variance
matrix.
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Other supplement

The decomposition error comparison among MLEs, the posterior estimators from
weakly-informative and empirical priors is:

MLE Loss MAP(hnormal) MAP(empirical)
Median 761.9 645.2 715.2 709.2
Mean 785.2 657.1 733.3 728.6

sd 207.1 150.5 179.8 181.3

Table B.1: Information of decomposition error(2)

where hnormal is the weakly-informative prior half-normal distribution. Figure
B.1 is the box plot of their decomposition errors:

Figure B.1: Boxplot comparison of decomposition errors
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